Journal of Chromatography, 330 (1985) 315–321 Elsevier Science Publishers B.V., Amsterdam — Printed in The Netherlands

CHROM. 17 751

DETECTION OF PHENOLALKYLAMINES BY CAPILLARY COLUMN GAS CHROMATOGRAPHY–NEGATIVE CHEMICAL IONIZATION MASS SPEC-TROMETRY

G. P. CARTONI* Dipartimento di Chimica, Università di Roma, Rome (Italy) and M. CIARDI, A. GIARRUSSO and F. ROSATI Laboratorio Antidoping della FMSI, Rome (Italy) (Received March 23rd, 1985)

SUMMARY

Twelve phenolalkylamines normally used in different pharmaceutical products were determined in urine from volunteers given a therapeutical dose of the drug. The urine extracts were first derivatized with perfluoro propionic or butyric anhydride, then detected by capillary gas chromatography-negative chemical ionization mass spectrometry. The method is highly sensitive and specific in the analysis of biological samples.

INTRODUCTION

The combination of capillary gas chromatography (GC) with mass spectrometry is a very useful technique for trace analysis of different drugs in biological materials^{1,2}. Some difficulties are still encountered in the detection of phenolalkylamines because of their high polarity and low volatility. These compounds can be analysed by gas chromatography only after derivatization, and in electron impact mass spectrometry (EIMS) do not show a specific and sensitive fragmentation. Their detection in biological liquids is difficult.

The perfluoroacyl derivatives of these phenolalkylamines are very stable and volatile, and owing to their high electron affinity a sensitive and specific detection can be obtained by negative chemical ionization mass spectrometry (NCIMS). Many reports have been published on the detection of phenolalkylamine derivatives by GC-MS^{3,4}. Octopamine, tyramine and their metabolites have been determined in tissues by NCIMS⁶. Isomeric octopamines and synephrines were measured in urine by capillary GC and NCIMS⁷.

In this paper a procedure for detection of twelve phenolalkylamines is reported. The compounds which are present in a pharmaceutical formulation are detected in human urine after drug ingestion. Their derivatives are first formed with pentafluoropropionic or heptafluorobutyric anhydride are then detected by capillary GC and NCIMS. These derivatives give ions which are sufficiently abundant and specific to be very suitable for selected ion monitoring (SIM).

EXPERIMENTAL

Materials

The compounds reported in Table I were obtained from pharmaceutical products commercially available in Italy. The drugs were dissolved (or suspended) in 2 ml sodium borate solution at pH 9 and extracted with 2 ml of diethyl ether-*tert*.butanol (5:1), following, the procedure described below for the urine samples. All other reagents were of analytical grade (RPE; Carlo Erba, Italy).

TABLE I

PHENOLALKYLAMINES INVESTIGATED

Drug	<i>R</i> ₁	R ₂	R ₃	 R4	R ₅	<i>R</i> ₆	MW	Dose (mg)
Bamethan	C₄H₀	ОН	Н	OH	н	Н	209	10
Dimethophrine	CH ₃	ОН	OCH ₃	OH	OCH ₃	Н	227	60
Ethylephrine	C ₂ H ₅	ОН	OH	н	Н	Н	181	10
Hydroxyamphetamine	H	Н	Н	ОН	Н	CH ₃	151	20
Isophenephrine	C_3H_7	ОН	OH	Н	Н	н	195	20
Isoproterenol	C_3H_7	OH	OH	ОН	Н	Н	211	10
Metaproterenol	C_3H_7	OH	OH	Н	OH	Н	211	20
Metaraminol	Н	ОН	OH	Н	Н	CH ₃	167	10
Octopamine	Н	OH	Н	ОН	Н	н	153	50
Phenylephrine	CH ₃	ОН	OH	н	Н	н	167	ND*
Pholedrine	CH ₃	н	Н	OH	Н	CH ₃	165	20
Synephrine	CH₃	OH	Н	ОН	н	н	167	60

* Not determined.

Procedure

A therapeutic dose (10–60 mg) of each drug (Table I) was given orally to volunteers and urine collected before (blank), 4 and 24 h after the drug ingestion. A 5-ml volume of urine was passed through a Sep-Pak- C_{18} cartridge (Waters-Millipore, U.S.A.) which had previously been washed with methanol and water. The Sep-Pak was then washed with 3 ml of water and the compounds were eluted with 2 ml of methanol.

The solvent was evaporated and the residue hydrolysed for 1 h at 90°C with 1 ml of 1 M hydrochloric acid containing 100 mg of cysteine. The sample was cooled, extracted with diethyl ether and the solvent discarded. A 1.1-ml volume of a solution containing 166.7 g of boric acid in 1 l of 10 M sodium hydroxide was added (the pH of the resulting solution should be about 9), and the solution extracted with 5 ml of diethyl ether-*tert*.-butanol (5:1). The solvent was evaporated to dryness and the residue dissolved in 0.5 ml of cyclohexane.

Derivative formation

The cyclohexane solution containing the phenolalkylamine was added to 50 μ l of pentafluoropropionic (PFP) or heptafluorobutyric (HFB) anhydride and 25 μ l of pyridine. This solution was heated for 15 min at 70°C, cooled then and washed with 1 ml of 1 *M* sodium borate to eliminate the unreacted reagent. A 1–2 μ l volume of this solution was injected in the GC-MS system.

Apparatus

A Hewlett-Packard gas chromatograph (Model 5846 A) connected to a mass spectrometer (Model 5985) and equipped with an Hewlett-Packard data system was used. A fused-silica capillary column (25 m \times 0.31 mm I.D.) coated with bonded SE-54 (film thickness 0.52 μ m) was connected directly to the ion source of the mass spectrometer and the sample was introduced with a splitter in the ratio 1:5. Helium at a flow-rate of 2 ml/min was used as carrier gas.

The injector and transfer-line temperatures were 250°C. The column temperature was programmed from 140 to 220°C at a rate of 10°C/min. Negative chemical ionization was carried out with methane as reagent gas; source temperature, 100°C and pressure, 1 Torr; electron multiplier, *ca.* 2000 V.

RESULTS AND DISCUSSION

The derivatives are readily obtained in high yield according to the described procedure. In the present case the compounds are fully derivatized at the amino and hydroxyl groups. For the HFB derivatives the retention times are ca. 30–40% higher than for the corresponding PFP derivatives, and in both cases the derivatives are easily eluted from the capillary column (Figs. 1 and 2).

Comparing the retention times in Tables II and III, it appears that by using HFB a better separation is achieved between octopamine and ethylephrine, and between iso- and metaproterenol. On the other hand with HFB, synephrine is more strongly retained than isosynephrine and pholedrine, and better separated. In Tables II and III are also reported the six most intense peaks and the relative intensities

Fig. 1. Gas chromatogram of a standard mixture of PFP derivatives of phenolalkylamines by NCIMS total ion monitor. Peaks: 1 = hydroxyamphetamine; 2 = phenylephrine; 3 = ethylephrine; 4 = synephrine; 5 = pholedrine.

Fig. 2. Gas chromatogram of HFB derivatives of the mixture in Fig. 1 under the same conditions.

obtained from the NCI spectra. Among these peaks, always present is the molecular ion and also the ions $M - C_2F_5COOH$ (or $M - C_3F_7COOH$) and M - HF. Also present with a high intensity are the ions $C_2F_5COO^-$ (m/e = 163) (or $C_3F_7COO^-$, m/e = 213) and $C_2F_5CO^-$ (m/e = 147) (or $C_3F_7CO^-$, m/e = 197).

TABLE II

PFP DERIVATIVES OF PHENOALKYLAMINES

Drug	$\frac{t_R}{(min)}$ 3.70	MW 605	Six most intense peaks and relative intensities						
Metaraminol			585	163	441	605	457	147	
			100	97	78	57	32	32	
Hydroxyamphetamine	4.62	443	295	423	128	189	147	443	
			100	11	8	2	2	0.5	
Phenylephrine	5.12	605	163	419	605	585	147	176	
			100	22	15	13	12	9	
Octopamine	5.28	591	427	591	407	279	281	571	
			100	8	6	4	3	2	
Ethylephrine	5.55	619	163	433	599	619	553	190	
			100	24	19	15	12	11	
Metaproterenol	5.88	795	795	649	629	755	163	445	
•			100	27	26	23	23	14	
Isoproterenol	5.95	795	795	629	163	649	445	755	
•			100	65	40	32	26	22	
Synephrine	6.58	605	163	585	147	144	176	605	
			100	12	12	11	11	8	
Isophenephrine	6.60	633	163	447	613	633	450	467	
			100	46	25	22	15	13	
Pholedrine	7.20	457	147	457	128	290	310	417	
			100	26	8	6	2	1	
Bamethan	10.52	647	163	218	147	647	500	627	
			100	11	10	7	7	4	
Dimethophrine	12 30	665	163	665	645	144	147	315	
Dimenspinine	. 2.50	000	100	34	33	9	8	6	

Drug	t _R (min) 5.77	<i>MW</i> 755	Six most intense peaks and relative intensities						
Metaraminol			213	735	541	755	197	557	
			100	98	92	87	64	56	
Hydroxyamphetamine	6.68	543	345	365	523	178	479	543	
			100	16	12	4	1	0.5	
Phenylephrine	8.02	755	213	577	519	755	735	539	
			100	35	31	29	25	19	
Ethylephrine	8.47	769	213	533	591	769	553	749	
			100	36	36	28	27	27	
Octopamine	8.50	741	527	741	329	213	507	721	
-			100	35	11	10	10	4	
Isoproterenol	9.97	995	779	995	213	798	601	545	
-			100	90	84	76	65	52	
Metaproterenol	9.98	995	995	779	798	213	601	955	
-			100	65	53	42	40	35	
Isophenephrine	10.00	783	213	547	783	763	567	605	
			100	71	43	35	33	15	
Pholedrine	10.37	557	197	557	537	340	360	519	
			100	9	6	5	2	1	
Synephrine	10.55	755	213	197	735	558	755	178	
			100	25	16	10	9	8	
Bamethan	14.22	79 7	213	7 9 7	77 7	600	268	347	
			100	41	26	24	8	2	
Dimethophrine	15.95	815	795	815	213	583	617	775	
			100	90	76	7	6	6	

TABLE III

HFB DERIVATIVES OF PHENOLALKYLAMINES

The advantage of NCI compared with EI mass spectrometry is that with these highly electronegative derivatives there is a large production of negative ions and consequently a high current intensity. As is seen from the values in Tables II and III for the two classes of derivatives, with NCI there is always the possibility to select

Fig. 3. SIM gas chromatogram of an urine sample taken 4 h after ingestion of 10 mg of isoproterenol, with PFP derivatization.

Fig. 4. SIM gas chromatogram of the urine sample taken the same subject as in Fig. 3, 24 h after drug ingestion.

Fig. 6. SIM gas chromatogram of a urine sample taken 24 h after ingestion of 10 mg of metaraminol.

at least three or four ions, having a high intensity, which are specific for these phenolalkylamines and can be used in a screening procedure by selected ion monitoring (SIM). By using a quadrupole mass spectrometer with a data system as described, it is possible to carry out a routine analysis for these drugs in urine samples, by changing the selected m/e values at prefixed time intervals in such a way as to monitor the appropriate ions during the retention time range of the products under analysis.

This procedure is chiefly used in our laboratory for a routine analysis of phenolalkylamines in urine samples for antidoping control. NCI mass spectrometry is especially suitable for trace analysis of these derivatized compounds in biological samples; there is less interference compared with EI. The signal to noise ratio is higher and consequently detection limits lower than 1 ppb are easily obtained.

In Fig. 3 is shown the SIM analysis of a urine sample extracted 4 h after the ingestion of isoproterenol (a single dose of 10 mg). The recorded peaks correspond to the ions M^- (m/e = 795), M - 2HF (m/e = 755), (M + H) $-COC_2F_5$ (m/e = 649) and 649 - HF (m/e = 629) with the expected intensity ratios (Table II). In Fig. 4 is shown the same urine analysis for this subject but 24 h later. In Figs. 5 and 6 are reported the SIM analyses of urine samples taken 24 h after the ingestion of a single therapeutic dose of 10 mg of bamethan and metaraminol.

The analyses are carried out by monitoring with NCI four selected ions among the ones reported in Table II. In this way many urine samples can be analyzed with a high sensitivity and selectivity. When such an analysis indicated the presence of a drug, a full NCI spectra was recorded by use of a new injection of the sample.

REFERENCES

- 1 G. P. Cartoni, M. Ciardi, A. Giarrusso and F. Rosati, J. Chromatogr., 279 (1983) 515.
- 2 G. P. Cartoni and F. Coccioli, J. Chromatogr., 278 (1983) 144.
- 3 M. Donike, J. Chromatogr., 115 (1975) 591.
- 4 M. Donike, J. Chromatogr., 103 (1975) 91.
- 5 P. H. Duffield, D. F. H. Dougan, D. N. Wade, G. K. C. Low and A. M. Duffield, Spectrosc. Int. J., 2 (4-5) (1983) 311.
- 6 J. T. Martin, J. D. Barchas and K. F. Faull, Anal. Chem., 54 (1982) 1806.
- 7 K. E. Ibrahim, M. W. Couch, C. M. Williams, M. B. Budd, R. A. Yost and J. M. Midgley, Anal. Chem., 56 (1984) 1695.